OxLM: A Neural Language Modelling Framework for Machine Translation

نویسندگان

  • Paul Baltescu
  • Phil Blunsom
  • Hieu Hoang
چکیده

This paper presents an open source implementation1 of a neural language model for machine translation. Neural language models deal with the problem of data sparsity by learning distributed representations for words in a continuous vector space. The language modelling probabilities are estimated by projecting a word’s context in the same space as the word representations and by assigning probabilities proportional to the distance between the words and the context’s projection. Neural language models are notoriously slow to train and test. Our framework is designed with scalability in mind and provides two optional techniques for reducing the computational cost: the so-called class decomposition trick and a training algorithm based on noise contrastive estimation. Our models may be extended to incorporate direct ngram features to learn weights for every n-gram in the training data. Our framework comes with wrappers for the cdec and Moses translation toolkits, allowing our language models to be incorporated as normalized features in their decoders (inside the beam search).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of English-Persian Translation of Neural Google Translation

Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...

متن کامل

Improving Language Modelling with Noise-contrastive estimation

Neural language models do not scale well when the vocabulary is large. Noise contrastive estimation (NCE) is a sampling-based method that allows for fast learning with large vocabularies. Although NCE has shown promising performance in neural machine translation, its full potential has not been demonstrated in the language modelling literature. A sufficient investigation of the hyperparameters ...

متن کامل

A new model for persian multi-part words edition based on statistical machine translation

Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...

متن کامل

Incorporating Side Information into Recurrent Neural Network Language Models

Recurrent neural network language models (RNNLM) have recently demonstrated vast potential in modelling long-term dependencies for NLP problems, ranging from speech recognition to machine translation. In this work, we propose methods for conditioning RNNLMs on external side information, e.g., metadata such as keywords, description, document title or topic headline. Our experiments show consiste...

متن کامل

Multi-Task Learning for Multiple Language Translation

In this paper, we investigate the problem of learning a machine translation model that can simultaneously translate sentences from one source language to multiple target languages. Our solution is inspired by the recently proposed neural machine translation model which generalizes machine translation as a sequence learning problem. We extend the neural machine translation to a multi-task learni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Prague Bull. Math. Linguistics

دوره 102  شماره 

صفحات  -

تاریخ انتشار 2014